Python内建了map()
和reduce()
函数。
如果你读过Google的那篇大名鼎鼎的论文“MapReduce: Simplified Data Processing on Large Clusters”,你就能大概明白map/reduce的概念。
我们先看map。map()
函数接收两个参数,一个是函数,一个是Iterable
,map
将传入的函数依次作用到序列的每个元素,并把结果作为新的Iterator
返回。
举例说明,比如我们有一个函数f(x)=x^2,要把这个函数作用在一个list [1, 2, 3, 4, 5, 6, 7, 8, 9]
上,就可以用map()
实现如下:
f(x) = x * x
│
│
┌───┬───┬───┬───┼───┬───┬───┬───┐
│ │ │ │ │ │ │ │ │
▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼
[ 1 2 3 4 5 6 7 8 9 ]
│ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │
▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼
[ 1 4 9 16 25 36 49 64 81 ]
现在,我们用Python代码实现:
map()
传入的第一个参数是f
,即函数对象本身。由于结果r
是一个Iterator
,Iterator
是惰性序列,因此通过list()
函数让它把整个序列都计算出来并返回一个list。
你可能会想,不需要map()
函数,写一个循环,也可以计算出结果:
的确可以,但是,从上面的循环代码,能一眼看明白“把f(x)作用在list的每一个元素并把结果生成一个新的list”吗?
所以,map()
作为高阶函数,事实上它把运算规则抽象了,因此,我们不但可以计算简单的f(x)=x^2,还可以计算任意复杂的函数,比如,把这个list所有数字转为字符串:
只需要一行代码。
再看reduce
的用法。reduce
把一个函数作用在一个序列[x1, x2, x3, ...]
上,这个函数必须接收两个参数,reduce
把结果继续和序列的下一个元素做累积计算,其效果就是:
比方说对一个序列求和,就可以用reduce
实现:
当然求和运算可以直接用Python内建函数sum()
,没必要动用reduce
。
但是如果要把序列[1, 3, 5, 7, 9]
变换成整数13579
,reduce
就可以派上用场:
这个例子本身没多大用处,但是,如果考虑到字符串str
也是一个序列,对上面的例子稍加改动,配合map()
,我们就可以写出把str
转换为int
的函数:
整理成一个str2int
的函数就是:
还可以用lambda函数进一步简化成:
也就是说,假设Python没有提供int()
函数,你完全可以自己写一个把字符串转化为整数的函数,而且只需要几行代码!
lambda函数的用法在后面介绍。
练习
利用map()
函数,把用户输入的不规范的英文名字,变为首字母大写,其他小写的规范名字。输入:['adam', 'LISA', 'barT']
,输出:['Adam', 'Lisa', 'Bart']
:
Python提供的sum()
函数可以接受一个list并求和,请编写一个prod()
函数,可以接受一个list并利用reduce()
求积:
利用map
和reduce
编写一个str2float
函数,把字符串'123.456'
转换成浮点数123.456
:
参考代码
小结
map
用于将一个函数作用于一个序列,以此得到另一个序列;
reduce
用于将一个函数依次作用于上次计算的结果和序列的下一个元素,以此得到最终结果。